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vl

i The ability and compulsion to know are as characteristic of our human nature as are our physical posture
and our languages. Knowledge and intelligence, as scientific concepts, arc used to describe how an organism’s
expcrience appears to mediate its behavior. ‘This report discusses the relation between artificial intelligence
(AI) research in computer science and the approaches of other disciplines that study the nature of intelligence,
cognition, and mind. The state of Al after 25 years of work in the ficld is reviewed, as are the views of its
practitioners about its relation to cognate disciplines. The report concludes with a discussion of some possible
effects on our scientific work of emerging commercial applications of Al technology, that is, machines that

can know and can take part in human cognitive activities. \

Artificial Intelligence

Artificial intelligence is the part of computer science concerned with creating and studying computer
programs that cxhibit bchavioral characteristics we identify as intelligent in human bechavior—knowing,
rcasoning, lcarning, problem solving, language understanding, and so on. Since the ficld's emergence in the
mid-1950s. Al researchers have developed dozens of programs and programming techniques that support
some sort of “intelligent™ behavior. Although there are many attitudes expressed by rescarchers in the field,
most of these people are motivated in their work on intelligent computer programs by the thought that this

work may lead to a new understanding of mind:

AT has also embraced the larger scientific goal of constructing an information-processing theory of
intelligence. If such a science of intelligence could be developed. it could guide the design of
intelligent machines as well as explicate intelligent behavior as it occurs in humans and other
animals. (Nilsson, 1980, p. 2)

]To appear in The Study of Information: Interdisciplinary Messages. cdited by I-ritz Machlup and Una Mansficld. and published by
John Wiley and Sons, New York, 1983.
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Whether or not it leads to a better understanding of the mind, there is every evidence that current work
in Al will lead to a new intelligent technology that may have dramatic cffects on our society. Experimental Al
systems have alrcady generated interest and enthusiasm in industry and are being developed commercially.
These experimental systems include programs that—

e solve some hard problems in chemistry, biology, geology, engincering. and medicine at human-
expert levels of performance;

e manipulate robotic devices to perform some useful sensory-motor tasks; and

e answer questions posed in restricted dialects of English (French, Japanese, etc.).
Usetul Al programs will play an important part in the evolution of the role of computers in our lives—a role
that has changed. in our lifetimes, from remote to commonplace and that, if current expectations about

computing cost and power are correct, is likely to evolve further from uscful to essential.

The Origins of Artificial Intelligence

Scientific fields emerge as the concerns of scientists congeal around various phenomena. Sciences
are not defined, they are recognized. (Newell, 1973a, p. 1)

The intellectual currents of the times help direct scientists o the study of certain phenomena. For the
evolution of Al, the two most important forces in the inteflectual environment of the 1930s and 1940s were
mathematical logic, which had been under rapid development since the end of the 19th century, and new
ideas about computation. The logical systems of Frege, Whitchead and Russell, Tarski, and others showed

that some aspects of reasoning could be formalized in a relatively simple framework:

The fundamental contribution was to demonstrate by example that the manipulation of symbols
(at least some manipulation of some symbols) could be described in terms of specific, concrete
processcs quite as readily as could the manipulation of pine boards in a carpenter shop. . . . Formal
logic. if it showed nothing clse, showed that idcas—at least some ideas—could be represented by
symbols, and that these symbols could be altered in meaningful ways by precisely defined
processes. (Newell and Simon, 1972, p. 877)

Mathematical logic continues to be an active arca of investigation in Al in part because gencral-purpose,
logico-deductive systems have been successfully implemented on computers. But even before the advent of
computers, the mathematical formalization of logical reasoning shaped people’s conception of the relation

between computation and intelligence,

Idcas about the nature of computation, due to Church, Turing, and others, provided the iink between the

notion of formalization of reasoning and the computing machines about to be invented. What was essential in




this work was the abstract conception of computation as symbol processing.  The first computers werc
numerical calculators that did not appear to embody much intelligence at all. But before these machines were
even designed, Church and T'uring had seen that numbers were an inesscutial aspect of computation—they

were just one way of interpreting the internal states of the machine:

In their striving to handle symbots rigorously and objectively—as objects—logicians became more
and more explicit in describing the processing system that was supposed to manipulate the
symbols. In 1936, Alan Turing, an English logician, described the processor, now known as the
Turing machine, that is regarded as the culmination of this drive toward formalization, (Newell
and Simon, 1972, p. 878)

The model of a Turing machine contains within it the notions both of what can be computed and
of universal machines—computers that can do anything that can be done by any machine.
{Newell and Simon, 1976, p. 117)

Turing. who has been called the father of Al not only invented a simple, universal, and nonnumerical model
of computation but also argued directly for the possibility that computational mechanisms could behave in a
way that would be perceived as intelligent:

Thought was still wholly intangible and incffable until modern formatl logic interpreted it as the
manipulation of formal tokens. And it scemed still to inhabit mainly the heaven of Platonic ideals.
or the cqually obscure spaces of the human mind. until computers taught us how symbols could be
processed by machines. A. M. Turing . . . made his great contributions at the mid-century
crossroads of these developments that led from modern logic to the computer. (Newell and
Simon, 1976, p. 125)

As Allen Newell and Herbert Simon point out in the “Historical Epilogue™ to their classic work Human
Problem Solving (1972), there were other strong intellectual currents from several directions that converged in
the middle of this century in the people who founded the science of artificial intelligence. The concepts of
cybernctics and self-organizing systems of Wicner, McCulloch, and others dealt with the macroscopic
behavior of “locally simple™ systems. The cyberneticians influcnced many ficlds becausc their thinking
spanned many ficlds, linking ideas about the workings of the nervous system with information theory and
control theory, as well as with logic and computation. Their idcas were part of the zeitgeist, but in many cases

the cyberneticians influenced carly workers in Al more directly—as their teachers.

What eventually connected these diverse ideas was, of course, the development of the computing
machines themselves, conceived by Babbage and guided in this century by Turing, von Neumann, and others.
It was not long after the machines became available that people began to try to write programs to solve

puzzles, play chess, and translate texts from one language to another—the first Al programs.




What was it about computers that triggered the development of AI? Many ideas about computing
relevant to Al emerged in the carly designs—idcas about memories and processors, about systems and
control, and about levels of languages and programs. But the single attribute of the new machines that
brought about the emergence of the new science was their inherent potential for complexity, encouraging (in
several fields) the development of new and more direct ways of describing complex processes—in terms of
complicated data structures and proccdures with hundreds of different steps:

Problem solving behaviors, even in the relatively well-structured task environments that we have
used in our rescarch, have generally been regarded as highly complex forms of human
behavior—so complex that for a whole generation they were usually avoided in the psychological
laboratory in favor of behaviors that seemed to be simple. . . . The appearance of the modern
computer at the end of World War Il gave us and other rescarchers the courage to return to
complex cognitive performances as our source of data . . . a device capable of symbol-
manipulating behavior at levels of complexity and generality unprecedented for man-made
mechanisms. . . . This was part of the gencral insight of cybernctics, delayed by ten years and
applied to discrete symbolic behavior rather than to continuous feedback systems. (Newell and

Simon, 1972, pp. 869-870)

Computers, Complexity, and Intelligence

As Pamela McCorduck notes in her entertaining historical study of Al Machines Who Think (1979), there
has been a longstanding connection between the idea of complex mechanical devices and intelligence.
Starting with the fabulously intricatc clocks and mechanical automata of past centuries, people have made an
intuitive link between the complexity of a machine’s operation and some aspects of their own mental life.
Over the last few centurics, new technologies have resulted in a dramatic increase in the complexity we can
achicve in the things we build. Modern computer systems are more complex by several orders of magaitude

than anything humans have built before.

The first work on computers in this century focused on the numerical computations that had previously
been performed collaboratively by teams of hundreds of clerks, organized so that cach did one small
subcalculation and passed the results on to the clerk at the next desk. Not long after the dramatic success of
the first digital computers with these claborate calculations, peoplie began to explore the possibility of more
generally intelligent mechanical behavior—could machines play chess, prove thecorems, or translate
languages? They could, but not very well. The computer performs its calculations following the step-by-step
instructions it is given—thc method must be specificd in complete detail. Most computer scientists are

concerned with designing new algorithms, new languages, and new machinces for performing tasks like solving
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equations and alphabectizing lists—tasks that pcople perform using methods they can cxplicate. However,
people cannot specify how they decide which move to make in a game of chess or how they determine that

two sentences “mean the same thing.”

The realization that the detailed steps of almost all inteltigent human activity were unknown marked the
beginning of artificial intelligence as a scparate part of computer science. Al researchers investigate different
kinds of computation, and different ways of describing computation, in an attempt not just to create
intelligent artifacts but also to understand what intelligence is. A basic tenet of Al is that human intellectual
capacity will best be described in the same terms as the ones rescarchers invent to describe their programs.
However, they are just beginning to learn enough about those programs to know how to describe them
scientifically—in terms of concepts that illuminate their nature and differentiate among fundamental
categorics. Thesc ideas about computation have been developed in programs that perform many different
tasks, sometimes at the level of human performance, often at a much lower level. Most of these methods are

obviously not the same as the ones that pcople use to perform the tasks—some of them might be.

The Status of Artificial Intelligence

Many intelligent activitics besides numerical calculation and information retricval have been carried on
by programs. Many key aspects of thought—like recognizing people’s faces and reasoning by analogy—are
still puzzles; they are performed so unconsciously by people that adequate computational mechanisms have
not been postulated. Some of the successes, as well as some of the failures, have come as surprises. We will
list here some of the aspects of intelligence investigated in Al rescarch and try to give an indication of the

stage of progress.

There is an important philosophical point here that will be sidestepped. Doing arithmetic or learning the

capitals of all the countrics of the world, for example, are certainly activities that indicate intelligence in.

humans. The issuc here is whether a computer system that can perform these tasks can be said to know or
understand anything. ‘I'his point has been discussed at length (sec, c.g., Scarle, 1980, and appended
commentary) and will uc avoided here by describing the behaviors themscelves as intelligent, without

commitment as to how to describe the machines that produce them.

Problem solving. The first big “successes™ in Al were programs that could solve puzzics and play games.

Techniques such a2s looking ahecad several moves and dividing difficult problems into casicr subproblems




evolved, respectively, into the fundamental Al techniques of search and problem reduction. Today's programs
play championship-level checkers and backgammon, as well as very good chess.  Ancther problem-solving
program, the onc that does symbolic evaluation of mathematical functions, performs very well and is being
used widely by scientists and engincers.  Some programs can cven improve their own performance with

experience.

As discussed below, the open questions in this arca involve abilities that human players exhibit but
cannot articulate, such as the chess master's ability to sce the board configuration in terms of meaningful
patterns. Another basic open question involves the original conceptualization of a problem, called in Al the
choice of problem representation. Humans often solve a problem by finding a way of thinking about it that
makes the solution casy; Al programs, so far, must be told how to think about the problems they solve (i.c..

the space in which to search for the sofution).

Logical reasoning. Closely related to problem and puzzle solving was early work on logical deduction.
Programs were developed that could “prove™ assertions by manipulating a data basc of facts, cach represented
by discrete data-structures just as they are represented by formulas in mathematical logic. These methods,
unlike many other Al techniques, could be shown to be complete and consistent. That is, given a sct of facts,
the programs theoretically could prove all theorems that followed from the facts, and only those theorems,
Logical reasoning has been one of the most persistently investigated subareas of Al rescarch. Of particular
interest are the problems of finding ways of focusing on only the relevant facts from a large data base and of

keeping track of the justifications for beliefs and updating them when new information arrives.

Programming. Although perhaps not an obviously important aspect of human cognition, programming
itsclfis an important area of rescarch in Al. Work in this area. called auromatic programming, has investigated
systems that can write computer programs from a varicty of descriptions of their purpose, such as examples of
input/output pairs, high-icvel language descriptions, and cven English-language descriptions of algorithms.
Progress has been limited to a few, fully worked-out examples. Automatic-programming rescarch may result
not only in semiautomated systems for software development but also in Al programs that learn (i.c., modify
their behavior) by modifying their own code. Related work in the theory of programs is fundamental to all Al

rescarch.

language. 'The domain of language understanding was also investigated by carly Al rescarchers and has

consistently attracted interest. Programs have been written that retrieve information from a data base in




response to questions posed in English, that translate sentences from one language to another, that follow
instructions or paraphrase statements given in English, and that acquire knowledge by reading textual
material and building an internal data base. Some programs have cven achieved limited success in
interpreting instructions that are spoken into a microphone rather than typed into the computer,  Although
these language systems are not ﬁcur]y 50 good as people are at any of these tasks, they are adequate for some
applications. Early successes with programs that answered simple queries and followed simple directions. and
carly failures at machine-translation attempts, have resulted in a sweeping change in the whole Al approach to
language. The principal themes of cufrcn[ language-understanding research are the importance of 3t
amounts of knowledge about the subject being discussed and the role of expeciations, based on the st it
matter and the conversational situation, in interpreting sentences. The state of the art of practical lang

programs is represented by useful “front ends™ to a variety of software systems. These programs accept .

only in some restricted form; they cannot handle some of the nuances of English grammar and arc usefur .ui
interpreting sentences only within a relatively limited domain of discourse. Although there has been very
limited success at translating Al results in language and specch-understanding programs into ideas about the
nature of human language processing the realization of the importance in language understanding of
extensive background knowledge. and of the contextual setting and intentions of the speakers, has changed

our notion of what language or a theory of language might be.

Learning. Certainly one of the most significant aspects of human intelligence is our ability to learn.
However, this is an example of cognitive behavior that is so poorly understood that very little progress has
been made in accomplishing it in Al systems. Although there have been several interesting attempts at this,
including programs that learn from examples, from their own performance. or from advice from others. Al

systems do not exhibit noticeable learning,

Robotics and vision. One area of Al rescarch that is receiving increasing attention involves [ rograms that
manipulate robot devices. Rescarch in this ficld has looked at everything from the optimal movement of
robot arms to mcthods of planning a sequence of actions to achicve a robot's goals. Some robots “sce™
through a TV camera that transmits an array of information back to the computer. The processing of visual
information is another very active, and very difficult, arca of Al rescarch. Programs have been developed that
can rccognize objects and shadows in {/isual scenes, and cven identify small changes from one picture to the
next, for example, for acrial reconnaissance. The true potential of this rescarch, however, is that it deals with

artificial intelligences in perceived and manipulable environments similar to our own.

——




Systems and languages. In addition to work directly aimed at achieving intelligence, the developmernt of
new tools has always been an important aspect of Al rescarch. Some of the most important contributions of
Al to the world of computing have been in the form of spin-offs. Computer-systems ideas like time-sharing.
list processing, and interactive debugging were developed in the Al rescarch environment.  Specialized
programming languages and systems, with features designed to facilitate deduction, robot manipulation,
cognitive modeling, and se on, have often been rich sources of new ideas. Most recent amaong these has heen
the many knowledge-representation languages. These are computer languages for encoding knowledge s
data structures and reasoning methods as procedures, developed over the last five years to explore a varicty of
ideas about how to build reasoning programs.  Terry Winograd's 1979 article "Beyond Programming

Languages™ discusses some of his ideas about the future of computing. inspired in part by his rescarch vn Al

Lxpert systems. Finally, the arca of “expert,” or "knowledge-based.” systems has recently emerged as a
likely arca for useful applications of Al techniques (Feigenbaum, 1977). Typically, the user interacts with an
expert system in a form of consultation dialogue. just as he (or she) would interact with a human expert in a
particular area: explaining his problem, performing suggested tests, and asking questions about proposed
solutions.  Current experimental systems have performed very well in consultation tasks like chemical and
geological data analysis, computer-system configuration, completion of income tax forms, and even medical
diagnosis. Expert systems can be viewed as intermediarics between human experts, who interact with the
systems in knowledge-acquisition mode, and human users. who interact with the systems in consultation moae.
Furthermore, much rescarch in this arca of Al has focused on providing these systems with the ability to
explain their rcasoning, both to make the consultation more acceptable to the uscr and to help the human

expert locate the cause of errors in the system'’s reasoning when they occur.

Because its imminent commercial applications are indicative of important changes in the ficld, much of
the ensuing discussion of the role of Al in the study of mind will refer to the expert-systems rescarch. That

these systems -
o “represent’ vast amounts of knowledge obtained from human experts,
e arc uscd as f0ols to solve difficult problems using this knowledge,
e can be viewed as intermediaries between human problem solvers,
o must explain their “thought processes™ in terms that pcople can understand, and

e arc worth a lot of money to people with real problems

ey




are the essential points that will be true of all of Al someday, in fact, of computers in general, and will change

the role that Al rescarch plays in the scientific study of thought.

Open problems. Although there have been much activity and progress in the 25-year history of Al some
very central aspects of cognition have not yet been achicved by computer programs. OQur abilities to reason
about others’ beliefs, to know the limits of our knowledge. to visualize things, to be “reminded™ of relevant
cvents, to lcarn, to recason by analogy, and to make plausible inferences, realize when they are wrong, and

know how to recover from them are not at all understood.

Itis a fact that these and many other fundamental cognitive capabilitics may remain problematic for some
time. But it is also a fact that computer programs have successfully achicved a level of performance on a
range of “intelligent” behaviors unmatched by anything other than the human brain. Al's fuilure to provide
some scemingly simple cognitive capabilities in computer programs becomes, in the view of Al to be

presented in this paper, part of the set of phenomena to be explained by the new science.

Al and the Study of Mind

Al research in problem solving, language processing. and so forth has produced some impressive and
useful computer systems. It has also influenced, and been influenced by. research in many other ficlds.
What, then, is the relation between Al and the other discipliites that study the various aspects of mind. for

cxample, psychology, linguistics, philosophy, and sociology?

Al certainly has a unique method—designing and testing computer programs-—and a unique
goal—making those programs secem intelligent. It has been argued from time to time that these attributes

make Al independent of the other disciplines:

Artificial Intelligence was an attempt to build intelligent machines without any prejudice toward
making the system simple, biological, or humanoid. (Minsky, 1968, p. 7)

But one does not start from scratch in building the first program to accomplish some intelligent behavior: the
ideas about how that program is to work must come from somewhere. Furthermore, most Al rescarchers are
interested in understanding the human mind and actively seck hints about its nature in their experiments with

their programs.

The interest within Al in the results and open problems of other disciplines has been fully reciprocated

by interest in and application of Al rescarch activity among rescarchers in other ficlds. Many experimental
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and theorcticat insights in psychotogy and linguistics, at least, have been sparked by Al techniques and results,
Furthermore, this flow is likely to increase dramatically in the future; its source is the variety of new
phenomena displayed by Al systems—the number, quality, utility, 'nd level of activity of which will soon
dramatically increase. But first let us examune what kind of interactions have taken place between Al and the

other disciplines.

The Language of Computation

As we defined it at the outset, Al is a branch of computer science. lts practitioners are trained in the
various subficlds of computer science: tormal computing theory, algorithm design, hardware and operating-
systems architecture, programming languages, and programming.  The study of cach of these subareas has
produced a language of its own, indicating our understanding of the important known phenoniena ot
computing.  The underlying assumption of our rescarch is that this Tanguage (which involves concepts like
process, procedure, interpreter, bottom-up and top-down processing, object-oricnted programming, and
tigger) and the experience with computation that it embodies will, in turn, assist us in understanding the

various phenomena of mind.

Betfore we go on to discuss the utility of these computational concepts, it should be stated that, in fact. our
understanding of computation itsclf is quite limited. Von Neumann (1958) drecamed of an “information
theory™ of the nature of thinking:

The body of cxperience which has grown up around the planning, evaluating, and coding of
complicated logical and mathematical automata will be the tocus of much of this information
theory. . . . It would be very satusfactory if one could talk about a “theory™ of such automata.
Regrettably, what at this moment exists—and to what 1 must appeal—can as yet be described only
as an imperfectly articulated and hardly formalized “body of experience.” (p. 2)

And ten years later, in their superb treatise on pereeptronlike automata, Minsky and Papert (1969) lament:

We know shamefully little about our computers and their computations. . . . We know very little,
tor tnstance, about how much computation a job should require. . .. The immaturity shown hy our
inabihity to answer questions of this kind is exhibited cven in the linguage used to formulate the
questions. - Word pairs such as “parallel”™ vs. “senal”™ “local™ s, “global”™ and “digital™ s,
“analog”™ are used as if they referred to well-defined technical concepts. Exen when this is true,
the technical meaning varies from user to user and context to context. But usually they are treated
so loosely that the species of computing machine defined by them betongs o mythelogy rather
than science. (pp. 1-2)

There is still no adequate theory of computation for understanding the nature and scope of symbolic
processes, but there is rapidly accumulating cxpericnce with computation of all sorts—uscful new concepts

emerge continually,
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The Computational Metaphor

The discipline most closely related to Al is cognitive psychology. These two disciplines deal primarily
with the same kinds of behaviors—perception, memory, problem solving. And they arc siblings: Modern
cognitive psychology emerged from its behavior-oriented precursors in conjunction with the rise of AL That
there might be a relation between the new ficld of Al and the traditional interests of psychologists was evident
from the beginning:

Our fundamental concern was to discover whether the cybernetic ideas have any relevance for
psychology.  ‘The men who have pioncered in this arca have been remarkably innocent of
psychology. ... There must be some way to phrase the new ideas so that they can contribute to and
profit from the science of behavior that psychologists have created.  (Miller, Galanter, and
Pribram, 1960, p. 3)

What in fact happened was that the existence of computing served as an inspiration o traditional
psychologists to begin to theorize in terms of internal, cognitive mechanisms,  Use of the concepts of
computation as metaphors for the processes of the mind strongly influenced the form of modern theories of
cognitive psychology-—for example, theories expressed in terms of memorics and retrieval processes:

Computers accept information, manipulate symbols, store items in “memory™ and retricve them
again, classify inputs, recognize patterns, and so on. Whether they do these things just like people
was less important than that they do them at all. The coming of the computer provided a
much-necded reassurance that cognitive processes were real. (Neisser, 1976, p. §)

The metaphorical use of the language of computation in describing mental processes was found to be, at
least for a time, quite fertile ground for sprouting psychological theorics.

During a period of concept formation, we must be well aware of the metaphorical nature of our
concepts.  However, during a period in which the concepts can accommodate most of our
questions about a given subject matter. we can afford to ignore their metaphorical origing and
confuse our description of reality with that reality. (Arbib, 1972, p. 11)

When pioncering work by Newell. Shaw, and Simon and by other rescarchh .roups showed that
“programming up” their intuitions about how humans solve puzzles, find theorems, and so on was adequate
to get impressive results, the link between the study of human problem-solving and Al rescarch was firmly

cstablished.

Consider, for cxample, computer programs that play chess. Current programs are quite proficient—the
best experimental systems play at the human “expert” level, but not as well as human chess “masters,” The
programs work by scarching through a space of possible moves, that is, considering the alternative moves and

their conscquences several steps ahead in the game, just as human players do. These programs, ¢ven some of
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the carliest versions, could search through thousands of moves in the time it takes human players to consider
only a dozen or so alternatives. ‘The theory of optimal search, developed as a mathematical formalism
(parallcling, as a matter of fact, much of the work on optimal decision theory in operations rescarch)

constitutes some of the core ideas of Al

The reason that computers cannot beat the best human players is that looking ahcad is not all there is o
chess.  Since there are too many possible moves to scarch exhaustively, even on the fastest imaginable
computers, alternative moves (board positions) must be evaluated without knowing for surc which move will
lead to a winning game, and this is onc of those skills that human chess cxperts cannot make explicit.
Psychological studies have shown that chess masters have learned to see thousands of meaningful
configurations of picces when they look at chess positions, which presumably helps them decide on the best

move, but no one has yet suggested how to design a computer program that can identify these configurations,

FFor the lack of theory or intuitions about human perception and learning, Al progress on computer chess
has virtually stopped. but it is quite possible that new insights into a very general problem were gained. ‘The
computer programs had pointed up, more clearly than ever, what would be uscful for a cognitive system t
learn to sce. It takes many ycars for chess experts to develop their expertise—their ability to “understand” the
game in terms of such concepts and patterns that they cannot explain casily, if at all. The general problem is
of course, to determine what it is about our experience that we apply to future problem solving: What kind of
knowledge do we glean from our experience? The work on chess indicated some of the demands that would

be placed on this knowledge.

Language Translation and Linguistics

Ideas about getting computers to deal in some useful way with the human languages, called “natural”
languages by computer scicentists, were conceived before any machines were ever built. The first line of attack
was 10 try to usc large. bilingual dictionaries stored in the computers to translate sentences from one language
to another (Barr and Feigenbaum, 1981, pp. 233-238). The machine would look up the translation of the
words in the original sentence, figure out the “"meaning”™ of the sentence (perhaps expressed in some

interlingua), and produce a syntactically correct version in the target language.

It did not work. It became apparent carly on that processing language in any uscful way involved

understanding, which in turn involved a great deal of knowledge about the world—in fact, it could be argued
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that the more onc “knows,” the more onc “understands™ cach sentence one reads. And the level of world
knowledge needed for any usefil language-processing is much higher than our original intuitions led us to

expect.

There has been a serious debate about whether Al work in computational linguistics has enlightened us
at all about the nature of language (see Dresher and Hornstein, 1976, and the replies by Winograd, 1977, and
Schank and Wilensky, 1977). The position taken by Al rescarchers is that if our goal in linguistics is to
include understanding sentences like Do you have the time? and We'll have dinner after the kids wash their
hands, which involve the total relationship between the speakers, then there is much more to it than the
syntactic arrangement of words with wéll-dcﬁncd meanings—that although the study in linguistics of the
systematic regularitics within and between natural languages is an important key to the nature of language
and the workings of the mind, it is only a small part of the problem of building a useful Tanguage processor

and, therefore, only a small part of an adequate understanding of language (Schank and Abelson, 1977):

For both people and machines, cach in their own way, there is a serious problem in common of
making sensc out of what they hear, see, or are told about the world. The conceptual apparatus
necessary to perform cven a partial feat of understanding is formidable and fascinating. (p. 2)

linguists have almost totally ignored the question of how human understanding works. . . . It has
nevertheless been consistently regarded as important that computers deal well with natural
language. . . . None of these high-sounding things arc possible, of course, unless the computer
rcally ‘understands’ the input. And that is the theoretical significance of these practical
questions—to solve them requires no less than articulating the detailed nature of ‘understanding’.
If we understood how a human understands, then we might know how to make a computer
understand, and vice versa. (p. 8)

This idea that building Al systems requires the articulation of the detailed nature of understanding, that
is, that implementing a theory in a computer program rcquires one to “work out”™ one’s fuzzy ideas and

concepts, has been suggested as a major contribution of Al rescarch (Schank and Abelson, 1977):

Whenever an Al rescarcher feels he undcerstands the process he is theorizing about in enough
detail, he then begins to program it to find out where he was incomplete or wrong. . . . ‘The time
between the completion of the theory and the completion of the program that embaodics the theory
is usually extremely long. (p. 20)

And Newell (1970), in a thorough discussion of cight possible ways onc might view the relation of Al to
psychology, suggests that building programs “forces psychologists 1o become operational, that is, to avoid the

fuzziness of using mentalistic terms™ (p'. 365).

Certainly the original conception of the machinc-translation cffort, although it was intuitively sensible,
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fell tar short of what would be required to enable a machine 1 handle language, indicating a limited
conception of what language is. Itis in the broadening of this conception that Al has contributed most o the
study of language (Schank and Abelson, 1977, p.9). Thus, Al can show, as in the examples of chess and
language understanding, that intuitive notions and assumptions about mental processes just do not work.
Furthermore, analyzing the behavior of Al programs implemented on the basis of existing, inadequate

concepts can offer hints on how the concepts of the theory affect the success of its application.

Scientific Languages and Theory Formation
Lawrence Miller. in a 1978 article that reviews the dialogue between psychologists and Al rescarchers
about Al's contribution to the understanding of mind, concludes that
the critics of Al belicve that it is casy to construct plausible psychological theories; the ditticult
task is demonstrating that these theories are true. The advocates of Al believe that it js difficult 10

construct adequate psychological theories: but once such a theory bas been constructed, it may be
relatively simple to demonstrate that it is true. (p. 113)

And Schank and Abclson (1977) agree:

We are not oricnted toward finding out which pieces of our theory are quantifiable and testable in
isolation. We feel that such questions can wait. First we need to know if we have a viable theory,

(.21
Just as Al must consider the same issues that psychology and linguistics address, other aspects of knowledge
dealt with by other traditional disciplines must also be considered. For example, current ideas in Al about
linking computing machines into coherent systems or cooperative problem-solvers forces us to consider the
sociological aspects of knowing. A fundamental problem in Al is communication among many individual
units, cach of which “knows™ some things relevant to some problems as well as something about the other
units. The form of the communication betwceen units, the organizational structurc of the complex, and the
nature of the individuals” knowledge of cach other are all questions that must find some engineering solution

if the apparent powcer of “distributed processing™ is to be realized.

These issues have been studied in other disciplines, albeit from very different perspectives and with
different goals and methods. We can view the different contral schemes proposed for interprocess
communication, for cxample, as attempts to design social systems of knowledgeable entities. Our intuitions,
once again, form the specifications for the first systems. Reid G. Smith (1978) has proposed a contract net

where the individual entities negotiate their roles in attacking the problem, via requests for assistance from
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other processors, proposals for help in reply, and contracts indicating agreement to delegate part of the
problem to another processor; and Kornfeld and Hewitt (1981) have developed a model explicitly based on
problem solving in the scientific community. Only after we have been able to build many systems based on

such modcls will we be able to identify the key factors in the design of such systems.

There is another kind of study of the mind, conducted by scientists who seck to understand the workings
of the brain. The brain as a mechanism has been associated with computing machines since their invention

and has puzzled computer scientists greatly:

We know the basic active organs of the nervous system (the nerve cells). There is every reason to
believe that a very large-capacity memory is associated with this system. We do most emphatically
not know what type of physical entities arc the basic components for the memory in question.
(von Neumann, 1958, p. 68)

If research on Al produces a language for describing what a computational system is doing. in terms of
processes, memories, messages, and so forth, then that language may very well be the one in which the
function of the ncural mechanisms should be described (L.enat, 1981: Torda, 1982). And, as Herbert Simon
(1980) points out, this functionality may be shared by nature’s other brand of computing device, DNA:

It might have been necessary a decade ago to argue for the commonality of the information
processes that are employed by such disparate systems as computers and human nervous systems.
The evidence for that commonality is now overwhelming, and the remaining questions about the
boundaries of cognitive science have more to do with whether there also exist nontrivial
commonalities with information processing in genctic systems than with whether men and
machines both think. (p. 45)

One more cxample of the overlap of concerns between Al and the related disciplines is the following.
Making it possible for an individual to know something about what another knows, without actually knowing
it, involves defining the nature of what is known elsewhere: who the experts are on what kinds of problems
and what they might know that could be uscful. This relates directly to the categorization of knowledge that
is the essence of library science. Instead of dealing with categories according to which static books wilt be

filed, however, Al must consider the dynamic aspects of systems that know and learn.,

The relation, then, between Al and disciplines like psychology, linguistics, sociology, brain science, and
library science is a complex one. Certainly our current understanding of the phenomena dealt with by these
disciplines—cognition, perception, memory, language, social systems, and categories of knowledge—has
provided the intuitions and models on which the first Al programs were built.  And. as has happened in

psychology and linguistics, these first systems may, in turn, show us new aspects of the phenomena that we
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have not considered in studying their natural occurrence.  But, most important, the development of Al
systems, of useful computer tools for knowledge-oriented tasks, will expose us to many new phenomena and

variations that will force us to increase our understanding.

The Practice of Al

Al, and computer science in general, employs a unique method among the disciplines involved in
advancing our understanding of cognition—building computers and programs, and observing and trying to
cxplain patterns in the behavior of these systems. The programs are the phenomena to be studicd (Newell,

1981):

- e — e W W T

Conceptual advances occur by (scientifically) uncontrolled experiments in our own style of
computing. . . . The solution lies in more practice and more attention to what emerges there as
pragmatically successful. (p. 4)

Observing our own practice—that is, secing what the computer implicitly tells us about the nature
of intelligence as we struggle to synthesize intelligent systems—is a fundamental source of
scientific knowledge for us. (p. 19) J

Thus, Al is one of the “sciences of the artificial,” as Herbert Simon (1969) has defined them in an influential i
paper. Half of the job is designing systems so that their performance will be interesting. There is a valuable
heuristic in generating these designs: The systems that we are naturally inclined to want to build are those
that will be useful in our environment. Our environment will shape them, as it shaped us. As Simon described

the development of time-sharing systems:

Most actual designs have turned out initially to exhibit scrious deficiencies, and most predictions A
of performance have been startlingly inaccurate. Under these circumstances, the main route open
to the development and improvement of time-sharing systems is to build them and sce how they
behave. (p. 21)

The Genus of Symbol Manipulators

Newcll and Simon’s psychologically phrased idea of “obscrving the behavior of programs™ follows from
their pioncering rescarch program in what they have called information processing psychology. Newell and
Simon developed, in the carly years of this enterprise, some of the first computer programs that showed
reasoning capabilitics. This rescarch on chess-playing. theorem-proving, and problem-solving programs was
undcrtaken as an cxplicit attempt to modecl the corresponding human behaviors. But Newell and Simon took
the strong position that these programs were not to serve simply as metaphors for human thought but were
themselves theorics. n fact, they argued that programs were the natural vehicle for expressing theorics in

psychology:
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An abstract concept of an information processing system has emerged with the development of the
digital computers. In fact, a whole array of different abstract concepts has developed, as scientists
have sought to capture the essence of the new technology in different ways. . .. With a model of an
information processing system, it becomes meaningful to try o represent in some detail a
particular man at work on a particular task. Such a representation is not metaphor, but a precise
symbaolic mode! on the basis of which pertinent specific aspects of the man's problem solving
beiavior can be calculated. (Newell and Simon, 1972, p. 5)

‘Taking the view that artificial intelligence is theorctical psychology. simulation (the running of a
program purporting to represent some human behavior) is simply the calculation of the
consequences of a psychological theory. (Newell, 1973a, p. 47)

A framework comprehensive enough to encourage and permit thinking is offered. so that not only
answers, but questions, criteria of evidence, and relevance all become affected. (Newell, 19734,
p.59)

Newell and Simon, in their view that computer programs are a vehicle for expressing psychological

theories rather than just serving as a metaphor for mental processes, were alrcady taking a strong position

rclative to even the new breed of cognitive psychologists who were talking in terms of computerlike mental

mechanisms. As Paul R. Cohen (1982) puts it, in his review of Al work on models of cognition:

We should note that we have presented the strongest version of the information-processing
approach, that advocated by Newell and Simon.  Their position is so strong that it defines
information-processing psychology almost by exclusion: It is the ficld that uses methods alien to
cognitive psychology to explore questions alien to AL This is an exaggeration, but it serves to
illustrate why there are thousands of cognitive psychologists. and hundreds of Al rescarchers, and
very few information-processing psychologists. (p. 7)

However, Newell and Simon did not stop there. A further development in their thinking identified brains

and computers as two species of the genus of physical symbol systems—the kind of system that, they argue,

must underlie any intclligent behavior.

At the root of intelligence are symbols, with their denotative power and their susceptibility to
manipulation. And symbols can be manufactured of almost anything that can be arranged and
patterned and combined. Intelligence is mind implemented by any patternable kind of matter.
(Simon, 1980, p. 35)

A physical symbol system has the necessary and sufficient means for general intelligent action.
{Ncwecll and Simon, 1976, p. 116)

Information processing psychology is concerned essentially with whether a successful theory of
human behavior can be found within the domain of symbolic systems. (Newell, 1970, p. 372)

The basic point of view inhabiting our work has been that programmed computer and human
problem solver are both specics belonging to the genus 1PS. (Newell and Simon. 1972, p. 869)
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It is this vicw of computers—as systems that share a common, underlying structure with the human :
1
intclligence system—that promotes the behavioral view of Al computer rescarch. Although these machines }
i

arc not limited by the rules of development of their natural counterpart, they will be shaped in their

development by the same natural constraints responsible for the form of intelligence in nature. ,

The Flight Metaphor

The question of whether machinges could think was certainly an issue in the carly days of Al rescarch,

although dismissed rather summarily by those who shaped the emerging science:

To ask whether these computers can think is ambiguous. In the naive realistic sense of the term, it
is people who think, and not cither brains or machines. If, however, we permit oursclves the
cllipsis of referring to the operation of the brain as “thinking,” then, of course, our computers
“think.” (McCulloch, 1964, p. 368)

Addressing fundamental issucs like this one in their carly writing, several rescarchers suggested a parallel with
the study of flight, considering cognition as another natural phenomenon that could eventually be achieved
by machines:

Today. despite our ignorance, we can point to that biological milestone, the thinking brain, in the
same spirit as the scientists many hundreds of years ago pointed to the bird as a demonstration in
nature that mechanisms heavier than air could fly. (Feigenbaum and Feldman, 1963, p. 8)

It is instructive to pursue this analogy a bit farther. Flight, as a way of dealing with the contingencies of
the environment, takes many forms—from soaring cagles to hovering hummingbirds. If we start to study

flight by cxamining its forms in nature, our initial understanding of what we are studying might involve terms

like feathers, wings, weight-to-wing-siz¢ ratios, and probably wing-flapping, too. This is the language we
begin to develop—identifying regularities and making distinctions among the phenomena. But when we start

to build flying artifacts, our understunding changes immediately:

to recognize certain phenomena.  Real understanding of bird flight came from understanding

Consider how people came to understand how birds fly. Certainly we observed birds. But mainly T
Slighi; not birds. (Papert, 1972, pp. 1-2) ﬁ

Even if we fail a hundred times at building a machine that flics by flapping its wings, we learn from every

attempt. And cventually we abandon some of the assumptions implicit in our definition of the phenomena

under study and realize that flight does not require wing movement or even wings:

Inteligent behavior on the part of a machine no more implies complete functional equivalence
between machine and brain than flying by an airplanc implies complete functional cquivalence
between plane and bird. (Armer, 1963, p. 192)
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Every new design brings new data about what works and what doces not, and clues as to why. Every new
contraption tries some different design alternative in the space defined by our theory language. And cvery

attempt clarifies our understanding of what it means to fly.

But there is more to the sciences of the artificial than defining the ““true nature™ of natural phenomena.
The exploration of the artifacts themscelves, the stiff-winged flying machines, because they are usefil to
society, will naturally extend the exploration of the various points of interface between the technology and
society. While naturce’s exploration of the possibilitics is limited by its mutation mechanism, human inventors
will vary every parameter they can think of to produce cffects that might be useful—exploring the constraints
on the design of their machines from c;'cry angle. ‘The space of “flight” phenomena will be populated by

examples that naturc has not had a chance to try,

Exploring the Space of Cognitive Phenomena

This argument, that the utility of intelligent machines will drive the exploration of their capabilities,
suggests that the development of Al technology has begun an exploration of cognitive phenomena that will
involve aspects of cognition that arc not casy to study in nature. In fact, as with the study of flight, Al will
allow us to sec natural intelligence as a limited capability, in terms of the design trade-offs made in the
evolution of biological cognition:

Computer science is an empirical discipline. . . . Each new machine that is built is an experiment.
... kFach new program that is built is an experiment. 1t poses a question to nature, and its behavior
offers clues to an answer. . .. We build computers and programs for many rcasons. We build them
to serve society and as tools for carrying out the economic tasks of socicty. But as basic scientists
we build machines and programs as a way of discovering new phenomena and analyzing
phenomena we already know about. . . . The phenomena surrounding computers are deep and
obscure, requiring much experimcentation to assess their nature. (Newcell and Simon, 1976, p. 114)

For what will Al systems be uscful? How will they be involved in the cconomic tasks of society? It has
certainly been argued that this point is one that distinguishes biological systems from machines (Norman,

1980):

The human is a physical symbol system, yes. with a component of pure cognition describable by
mechanisms. . . . But the human is more: The human is an animate organism, with a biological
basis and an evolutionary and cultural history, Maorcaver, the human is a social animal, interacting
with others, with the environment, and with itsclf. The core disciplines of cognitive science have
tended to ignore these aspects of behavior. (pp. 2-4)

The difference between natural and artificial devices is not simply that they are constructed of
different stuff; their basic functions differ. Humans survive. (p. 10)
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Tools evolve and survive according to their utility to the people who use them. Either the uscrs find better
tools or their competitors find them. This process will certainly continuc with the development of cognitive
tools and will dramatically change the way we think about Al:

We measure the intelligence of a system by its ability to achicve stated ends in the face of
variations. difticulties and complexitics posed by the task environment. This general investment
of computer science in attaining intelligence . . . becomes more obvious as we extend computers to
more global complex and knowledge-intensive tasks—as we attempt o make them our agents,
capable of handling on their own the full contingencies of the nawral world. (Newell and Simon,
1976, pp. 114-115)

In fact, this change has alrcady begun in Al laboratories, but the place where the changing perception of Al

systems is most dramatic and accelerated is, not surprisingly in our socicty, the marketplace.

Al, Inc.

To date, three of the emerging Al technologies have attracted interest as commercial possibilitics: robots
for manufacturing. natural-language front-ends for information-retricval systems, and cxpert systems.  The
reason that a company like General Motors invests millions of dollars in robots for the assembly line is not
scientific curiosity or propaganda about “retooling™ their industry. GM believes these robots are essential to
its cconomic survival, Al technology will surcly change many aspects of American industry. but its
application to rcal problems will just as surcly change the ermerging technology—change our perception of its
nature and of its implications about knowledge. The remaining discussion will focus on this issuc in the

context of expert systems.

Expert Systems

With work on the DENDRAL system in the mid-1960s, Al researchers began pushing work on
problem-solving systems beyond constrained domains like chess, robot planning, blocks-world manipulations,
and puzzles: ‘They started to consider symbolically expressed problems that were known to be difficuit for the

best human researchers to solve (sce 1indsay, Buchanan, Feigenbaum, and I.ederberg, 1980).

One needs to move toward task environments of greater complexity and openness—to cveryday
reasoning. to scientific discovery, and so on. The tasks we tackled, though highly complex by prior
psychological standards, still are simplc in many respects. (Newell and Simon, 1972, p. 872)

Humans have difficulty keeping track of all of the knowledge that might be relevant to a problem, exploring
all of the alternative solution-paths, and making sure nonc of the valid solutions is overlooked in the process.
Work on DENDRAL showed that when human experts could explain exactly what they were doing in solving

their problems, the machine could achicve expert-level performance.
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Continued rescarch at Stanford’s Heuristic Programming Project next produced the MYCIN system, an
experiment in modeling medical diagnostic reasoning (Shortliffe, 1976). In production rules of the form [f
Cconditiond then <action). Shortliffe encoded the kind of information about the reasoning processes of
physicians that they were most able o give—advice about what to do in certain situations. In other words, the
if part of the nules contains clauses that attempt to differentiate a certain sitvation, and the then part describes
what (o do if one finds oneself in that situation.  This producton-rule knowledge representation worked
surprisingly well: MYCIN was able to perform its task in a specific arca of infectious-discase diagnosis as well

as the best experts in the country.

FFurthermore, the MYCIN structure was scen to be, at least to some extent, independent of the domain ot
medicine. So long as experts could describe their knowledge in terms of If. . then ... rules, the reasoning
mechanism that MYCIN used to make inferences from a large set of rules would come up with the right
questions and, eventually, a satisfactory analysis. MYCIN-like systems have been successfully built in
rescarch laboratories for applications as diverse as mineral exploration, diagnosis of computer-cquipment

failure, and cven advising users about how to use complex systems.

Transfer of Expertise

There is an important shift in the view of expert systems just described that illustrates the changing
perspective on Al that is likely to take place as it becomes an applicd science. The carly work an expert
systems, building on Al rescarch in problem solving, focused on representing and manipulating the facts in
order to get answers. But through MYCIN, whose reasoning mechanism is actually quite shallow, it became
clear that the way that these systems interacted with the people who had the knowledge and with those who
nceded it was an important, deep constraint on the system’s architecture—on its knowledge representations
and rcasoning mechanisms:

A key idea in our current approach to building expert systems is that these programs should not
only be able to apply the corpus of expert know ledge to specific problems, but they siould also be
able to interact with the users and experts just as humans do when they learn, explan, and teach
what they know. . . . ‘These rransfer of expertise (FOE) capabilities were originally necessitated by
“human engincering” considerations—the people who build and use our systems necded a variety
of “assistance™ and “explanation™ facilitics. However, there is more to the idea of TOE than the
implementation of nceded user features:  These social interactions—Ilearning from experts,
cxplaining one's reasoning. and teaching what onc knows—are cssential dimensions of human
knowledge. They are as fundamental to the nature of intelligence as expert-level problem-solving,
and they have changed our ideas about representation and about knowledge. (Barr, Bennett, and
Clanccy, 1979, p. 1)
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Randall Davis’s (1976) TEIRESIAS system, built within the MYCIN framework, was the first to tocus on
the transferral aspects of expert systems.  TEIRESIAS offered aids for the experts who were entering
knowledge into the system and for the system’s users. For example, in order for an expert to figure out why a
system has come up with the wrong diagnosis or is asking an inappropriate question, he (or she) has to
understand its benavior in his Q\\n terms: The system must explain its reasoning in terms of concepts and
procedures with which the expert is familiar. The same sort of explanation facility is necessary for the
evenual user of an expert system who will want to be assured that the system’s answers are well founded.
bExpert-systems technology had to be Ex!cndvd to facilitate such interactions, und. in the process. our
conception of what an expert system was had changed. No longer did the systems simply solve problems:

they now transferred expertise {tom people who had it to people who could use it

We are building systems that take part in the human activity of rransfer of expertise among experts,
practitioners, and students in different kKinds of domains. Qur problems remai the same as they
were before: We must tind good ways to represent know ledge and meta-knowledge. o carry on a
dialogue. and to solve problems in the domain. But the guiding principles of our approach and
the underlying constraints on our solutions have subth shifted: Our systems are no longer being
designed solely to be expert problem solvers, using vast amounts ot cncoded knowledge. There
are aspects of “knowing™ that have so far remained uncexplored in Al rescarch: By participation in
fuonan transfer of expertise. these systems will involve more of the fabric of behavier that is the
reason we asertbe knowledge and intelfigence to people. (Barr, Bennetw, and Clancey, 1979, p. 51

The Technological Niche

It is the goal of those who are involved in the commercial development of expert-sysiems technology to
incorporate that technology into some device that can be sold. But the environment in which expert systems
operate is our own cognitive environment; it is within this sphere of activity—people solving their
problems—that the eventual expert-system products must be found useful. They will be cngineered to our

minds.

With these systems, it will at last become cconomical to match human beings in real time with
really large machines. ‘This means that we can work toward programming what will be, in effect.
“thinking aids.” In the years to come we expect that these man-machine systems will share, and
perhaps tor a time be dominant, in our advance toward the development of “artificial
intelligence.” (Minsky, 1963, p. 450)

It is a long way from the cxpert systems developed in the rescarch laboratories to any products that fit into
people’s lives; in fact, it is difficult even to envision what such products will be. Egon Locbner of Hewleut-
Packard [.aboratorics tells of a conversation he had many years ago with Viadimir Zworykin. the inventor of

television technology. Locbner asked Zworykin what he had in mind for his invention when he was

P
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descloping the technology in the 1920s —what kind of product he thought his eftorts would produce. The
inventor satd that he had had a very clear idea of the eventual use of TV He envisioned medical students in
the gallery of an operating room getting a clear picture on their PV <creens of the details of the operation

being conducted below them,

One cannot, at the outset, understand the application of a new technology, because it will find its way
nto realms of application that do not yet exist.  Lochner has desenbed this process moterms of the
rechnological niche, paralleling modern evolution theory (Lochner, 1976: T ochner and Borden, 1969). [ike
the species and their environment. inventions and their applications aie co-detined: -they constantly evolve
together, with niches representing periods of refative stubilits into o new reality:

Moreover, the niches themselves are . . . defined in considerable measure by the whole
comtellaton of orgamsms themselves. There can be no dice without hairy heads for them to
inhabit. nor animals without plants. (Simon, 1980, p. 44)

Fhus, technologieal inventions change as they are applied o people’s needs. and the activities that people
undertahe change with the availability of new technologies.  And as people in industry try to push the new
rechnology toward some profitable niche, they will also explore the nature of the underlying phenomena. Of
course, it s not just the scientists and engineers who developed the new technology who are involved in this

veploration: Half of the job involves finding out what the new capabilitics can do for people.

Recognition of the commercial application of TV technology was accomplished by David Sarnoff, after
the madel he had used for the radio broadcasting industry. It is important to note that the “commercial
product” that resulted from TV technology. the TV-set receiver, was only part of a gigantic sysren that had to
be deseloped for its support (actually imported from radio. with modifications and cxtensions), involving
broadeast technology, e networks, regulation of the air waves, advertising, and so forth. Loebner refers to
thts need for systemwide concern with product development as the Edisonian moécl of technological
innovation: Fdison’s achievement of the invention of the long-life, commercially feasible light bulb was
conducted i parallel with his suceessful development of the first dynamo for commiercially producing electric

powcer and with his design and implementation of the first clectric-power distribution network,

The Knowledge Industry

Among the scientific disciplines that study knowledge, the potential for commercial applications of

artifictal intelligence presents unique opportunitics.  To identify and fill the niches in which intelligent
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machines will survive, we must ask questions about “knowledge™ from a rather different perspectise. We
must identity the role that the various aspects of intelligence play, or could play, in the aftairs of men, mn such

away that we can identify correctable shortcomings in how things are done.

There is no question that the current best design of an intelligent system, the human brain, has its
limitations,  Computers have already helped people deal with such shortcomings as memory failure and
confusions, overloading in busy situations, their tendency to boredom. and their need tor sleep. These
extended capabilities—total recall, rapid processing, and uninterrupted attention—are cognitise capabilitics
that we hase been willing to concede to the new species in the genus of symbol manipidarors. They have
helped us do the things we did betore, and have made some entirely new capabilitics possible, for example,
airline reservation systems, 24-hour banking, and Pac-Man (although the truly challenging cumphlcr “games”
are yet to come!). Intelligence is also going to be present in this new species, as envisioned 20 years ago by
Marvin Minsky (1963):

I believe . . . that we are on the threshold of an era that will be strongly influenced, and quite
possibly dominated, by intelligent problem-solving machines. (p. 406)

Finding a way to apply this new intellectual capability, for cffectively applying relevant experience o new
situations, is the task ahcad for Al, Inc.

We have hardly begun to understand what this abundant and cheap intellectual power will do to
our lives. It has alrcady started to change physically the rescarch laboratories and the
manufacturing plants. It is difficult for the mind to grasp the ultimate consequences for man and
society. (Riboud, 1979)

It may be a while in coming, and it may involve a rethinking of the way we go about some cognitive activitics.
But it is extremely important that the development of intelligent machines be pursued. for the human mind
not only is limited in its storage and processing capacity but it also has known bugs: It is casily misled.

stubborn, and cven blind to the truth, especially when pushed to its limits.

And. as is nature’s way, cverything gets pushed to the limit, including humans, We must find a way of
organizing oursclves more cffectively, of bringing together the energies of larger groups of people toward a
common goal. Intelligent systems, built from computer and communications technology. will someday know
more than any individual human about what is going on in complex enterprises involving millions of people,
such as a multinational corporation or a city. And they will be able to explain cach person’s part of the task.

We will build more productive factorics this way, and maybe someday a more peaceful world. We must keep

—

-

ey



25

in mind, following our analogy of flight, that the capabilitics of intelligence as it exists in nature arc not
necessarily its natural limits:

There are uther facets to this analogy with flight; it, tgo, is a continuum, and some once thought
that the speed of sound represented a boundary beyond which flight was impossible.  (Armer,

1963, p. 398)
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